* Avellaneda, M. and Lee, J.H. (2010). Statistical arbitrage in the US equities market. Quantitative Finance, 10(7), pp.761-782.
* Bertram, W.K. (2010). Analytic solutions for optimal statistical arbitrage trading. Physica A: Statistical Mechanics and its Applications, 389(11), pp.2234-2243.
* Caldeira, J. and Moura, G.V. (2013). Selection of a portfolio of pairs based on cointegration: A statistical arbitrage strategy.
* Caporale, G.M., Gil-Alana, L. and Plastun, A. (2017). Searching for inefficiencies in exchange rate dynamics. Computational Economics, 49(3), pp.405-432.
* Cui, L., Huang, K. and Cai, H.J. (2015). Application of a TGARCH-wavelet neural network to arbitrage trading in the metal futures market in China. Quantitative Finance, 15(2), pp.371-384.
* de Moura, C.E., Pizzinga, A. and Zubelli, J. (2016). A pairs trading strategy based on linear state space models and the Kalman filter. Quantitative Finance, 16(10), pp.1559-1573.
* Drakos, S., (2016). Statistical Arbitrage in S&P500. Journal of Mathematical Finance, 6(01), p.166.
* Focardi, S.M., Fabozzi, F.J. and Mitov, I.K. (2016). A new approach to statistical arbitrage: Strategies based on dynamic factor models of prices and their performance. Journal of Banking & Finance, 65, pp.134-155.
* Gatev, E., Goetzmann, W.N. and Rouwenhorst, K.G. (2006). Pairs trading: Performance of a relative-value arbitrage rule. The Review of Financial Studies, 19(3), pp.797-827.
* Göncü, A. (2015). Statistical arbitrage in the Black–Scholes framework. Quantitative Finance, 15(9), pp.1489-1499.
* Hogan, S., Jarrow, R., Teo, M. and Warachka, M., (2004). Testing market efficiency using statistical arbitrage with applications to momentum and value strategies. Journal of Financial economics, 73(3): 525-565.
* Meucci, A. (2009). Review of statistical arbitrage, cointegration, and multivariate Ornstein-Uhlenbeck.
* Morgan, J. (2013). Hedge funds: Statistical arbitrage, high frequency trading and their consequences for the environment of businesses. critical perspectives on international business, 9(4), pp.377-397.
* Triantafyllopoulos, K. and Montana, G. (2011). Dynamic modeling of mean-reverting spreads for statistical arbitrage. Computational Management Science, 8(1), pp.23-49.
* Triantafyllopoulos, K. and Han, S. (2013). Detecting Mean-Reverted Patterns in Algorithmic Pairs Trading. In Mathematical Methodologies in Pattern Recognition and Machine Learning (pp. 127-147). Springer, New York, NY.