مقایسه قابلیتهای مدلهای مبتنی بر حافظه بلندمدت و مدل های شبکه عصبی پویا در پیشبینی بازدهی بورس اوراق بهادار تهران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 ندارد

2 مسئول مکاتبات

چکیده

این مقاله با هدف معرفی یک الگوی مناسب جهت پیش­بینی شاخص بازدهی بورس اوراق بهادار تهران صورت پذیرفته است. داده­های مورد استفاده در این پژوهش به صورت روزانه و شامل بازه­ی زمانی پنجم فروردین 1388 تا سی­ام آبان 1390 که مشتمل بر 616 مشاهده بوده که جهت مجزا سازی پیش­بینی­های داخل نمونه­ای و خارج از نمونه­ای، از تقریباً 90% از مشاهدات (556 مشاهده) جهت تخمین ضرایب مدل و از مابقی (60 مشاهده) جهت انجام پیش­بینی خارج از نمونه­ استفاده شده است. همچنین الگوهای مورد استفاده در این پژوهش عبارتند از؛ یک مدل غیرخطیِ شبکه­ی عصبی مصنوعی پویا (شبکه عصبی خودرگرسیونی)[i] و نیز یک مدل رگرسیونی غیرخطی (مدل خودرگرسیونی میانگین متحرک انباشته­ی کسری)[ii]. یافته­های این پژوهش نشان می­دهد که مدل شبکه­ی عصبی مصنوعی پویا در پیش­بینی­های خارج از نمونه، بر اساس معیارهای محاسبه­ی خطای پیش­بینی میانگین مجذور خطا (MSE)[iii] و نیز معیار جذر میانگین مجذور خطا (RMSE)[iv]، دارای عملکرد بهتری نسبت به مدل رگرسیونی غیرخطی ARFIMA می­باشند.



[r

کلیدواژه‌ها